Elucidation of the structure of an unusual cyclic glycolipid from *Torulopsis apicola*

Lutz Weber, Joachim Stach, Günter Haufe,

Department of Chemistry, Karl-Marx-University, Talstr. 35, DDR-7010 Leipzig (G.D.R.)

Rolf Hommel, and H.-P. Kleber

Department of Biosciences-Biochemistry, Karl-Marx-University, Talstr. 33, DDR-7010 Leipzig (G.D.R.) (Received October 2nd, 1989; accepted for publication, January 11th, 1990)

ABSTRACT

The yeast *Torulopsis apicola* produces a microcrystalline mixture of glycolipids, the major component of which has been identified as the novel $16-(2'-O-\beta-D-glucopyranosyl-\beta-D-glucopyranosyloxy)$ hexadecanoic acid 1',4''-lactone 6',6''-diacetate (2) by spectroscopic methods.

INTRODUCTION

Cultivation of the yeast *Torulopsis apicola* on D-glucose and/or octadecane yields a mixture of extracellular glycolipids¹, which consists of ω -1 hydroxylated fatty acid glycosides of partially acylated sophorose (2-O- β -D-glucopyranosyl-D-glucopyranose).

The structures of several, mainly unsaturated glycolipids, derived after cultivation of the yeast on octadecane or oleic acid, have been determined²⁻⁴ by ¹H-n.m.r. spectroscopy, chemical degradation, synthesis, and derivatization. Hitherto, no sophorolipids, the lipophilic moiety of which consists of ω -hydroxylated fatty acids, have been found⁵.

Fermentation of *T. apicola* on hexadecane under modified conditions^{6,7} yielded a crude, crystalline ~ 1:1 mixture of the sophorosides of 15-hydroxyhexadecanoic acid (1) and 16-hydroxyhexadecanoic acid (2). By varying the conditions of fermentation⁸, a 3:7 microcrystalline mixture of 1 and 2 was obtained. Attempts to resolve 1 and 2 by t.l.c. or h.p.l.c. failed. However, double-quantum (DQ) and double-quantum-filtered (DQF) RELAY spectroscopy in combination with quantitative ¹³C-n.m.r. spectroscopy allowed the structure of the novel lipid 2 to be determined without derivatization or chemical degradation experiments, and the results are now reported.

RESULTS AND DISCUSSION

The molecular weight of 662 of both 1 and 2 was verified by f.a.b.-mass spectrometry. On addition of KCl/NaCl to the glycerol matrix, spectra were obtained that contained $[M + K]^+$ and $[M + Na]^+$ ions (m/z 701) and 685, respectively). Loss of monoacetylated glucopyranose residues was shown by the peaks at m/z 441 for $[221]^+$ and 459 for $[M - 203]^+$, whereas the hexadecanoyl residue appeared at m/z 237.

L. WEBER et al.

The ¹³C- and ¹H-n.m.r. spectra of 1 and 2 were similar (Tables I-II) but could be identified from the spectra of mixtures with various compositions. The numbers of C, CH, CH₂, and CH₃ atoms/ groups were determined using the standard DEPT pulse sequence and quantitative ¹³C-n.m.r. spectroscopy⁹. From these data (Tables I and II), the main features of 1 and 2 were identified by the signals of two pairs of anomeric carbon (>100 p.p.m.) and hydrogen atoms (<4.5 p.p.m.) and $J_{\text{H-1,H-2}}$ values (7.8 Hz) typical of β -linked glucose residues¹⁰. The two disaccharide units of 1 and 2 are both 6',6"-diacetylated, and sixteen, further carbon signals corresponding to the hexadecanoyl residue were found for each lipid.

TABLE I

13C-N.m.r. chemical shift data (p.p.m.) for 1 and 2

Atom	CDCl ₃		$(CD_3)_2SO$		
	11	2	1	2	
C-1	173.3	173.3	172.1	172.1	
C = O	171.4	171.5	170.1	170.2	
	170.5	170.6	169.9	169.8	
C-1"	104.0	104.2	104.2	104.9	
C-1'	102.5	101.8	102.2	101.5	
C-2'	82.2	82.0	82.7	83.5	
C-4'	75.7	75.6	75.6	75.6	
C-5',5"	75.4	74.7	75.6	75.4	
C-5',5"	74.0	73.8	73.2	73.4	
C-3',3"	73.2	73.4	72.8	73.0	
C-3',3"	72.6	72.7	71.5	71.5	
C-2"	70.4	70.3	70.3	69.9	
C-4"	69.7	69.7	70.3	69.2	
C-6'	63.6	63.5	63.8	63.8	
C-6"	62.1	62.1	62.3	62.3	
C-2-13	24.7-	-30.0	24.4	-30.2	
$CH_3C = O$	20.9	20.9	21.0	21.0	
-	20.9	20.9	20.8	20.8	
C-16	20.9	70.5	21.1	70.4	
C-15	79.4	34.3	77.8	33.8	
C-14	37.6		37.3		

TABLE II

H-N.m.r. data (δ in p.p.m., J in Hz) for 2 in (CD₄), SO

Atom	δ	J	Atom	δ	J	
H-1'	4.33	7.8	H-1"	4.42	7.8	
H-2'	3.21	7.8, 9.2	H-2"	3.12	7.8, 9.5, 5.7	
H-3'	3.40	9.2, 9.0, 3.4	H-3"	3.45	9.5, 9.5, 5.5	
H-4'	3.15	9.0, 10.0, 4.4	H-4"	4.72	9.5, 10.0	
H-5'	3.38	10.0, 6.3, 2.7	H-5"	3.59	10.0, 4.8	
H-6a'	4.03	12.3, 6.3	H-6"	3.97	4.8	
H-6b'	4.24	12.3, 2.7				
HO-3'	5.64	3.4	HO-2"	5.33	5.7	
HO-4'	5.44	3.4	HO-3"	5.29	5.5	
H-16a	3.72	8.9, 6.3				
H-16b	3.39	8.9, 6.3				
H-2	2.31	6.3, 6.3				
Ac	2.02 an	d 2.01				
Chain C	H, 1.65-1.	15				

TABLE III

Characteristic ¹H-n.m.r. chemical shift data (p.p.m.) for 1 and 2 in CDCl₃

Atom	11	2
H-4"	4.95	4.95
H-1"	4.53	4.52
H-1'	4.41	4.39
H-6'	4.32	4.33
H-6"	4.16	4.16
H-2'	3.53	3.50
H-15	3.75	2.43
H-16	1.22	3.93 and 3.40

The spectral parameters of 1 are almost identical with those observed²⁻⁴ for the homologue that contains the 17-hydroxyoctadecanoic acid residue. On the basis of the ${}^{1}H^{-1}H$ COSY and ${}^{13}C^{-1}H$ HETCOR correlated 2D spectra and considerations analogous to those outlined below, 1 was identified as 15-(2'-O- β -D-glucopyranosyl- β -D-glucopyranosyloxy)hexadecanoic acid 1',4"-lactone 6',6"-diacetate.

The ω -1 hydroxylated hexadecanoyl residue was identified by the ω -methyl group doublet in the ¹H-n.m.r. spectrum and the signals of the CH₃-CHR-O- moiety in the ¹³C-n.m.r. spectrum. The ¹³C signals of the methylene chain in the macrocyclic lactones 1 and 2 were well resolved between 23.9 and 29.9 p.p.m., in contrast to the overlapped signals at 29.9 p.p.m. of the acyclic ω -1 15-hydroxyhexadecanoic acid.

Structural analysis of lipid 2 was started with 2D J-resolved 1 H-n.m.r. spectroscopy which gave the data in Table II. The large $^{3}J_{H,H}$ values (>7.5 Hz) and the 13 C shift data allowed the disaccharide unit to be assigned as β -glucopyranosyl- β -glucopyranose.

L. WEBER et al.

The advantage and limitations of ¹H-¹H-correlated 2D-n.m.r. methods in oligosaccharide analysis have been presented ¹¹.

COSY-90, COSY-45, DQF-COSY, DQF-RELAY, and DQ 2D methods were applied to determine the proton connectivities in 2. The COSY experiments were of limited use because several cross-peaks near the diagonal associated with vicinal protons having similar shift values were obscured by strong peaks on the diagonal. Also, there was poor resolution (natural line-width of ~ 3 Hz) caused by the large molecular rotational correlation time (τ_c) that resulted from aggregation of molecules which exhibit surfactant properties (the critical micellar concentration of the glycolipid mixture in water was 45 mg/L).

DQ 2D experiments¹² were performed with selection times according to coupling constants of 11 and 4 Hz. Fig. 1 shows 9 cross-peaks attributed to 6a'-6b' (4.03 and 4.24 p.p.m.), 6a'-5' (3.38 p.p.m.), 5'-4' (3.15 p.p.m.), 4'-3' (3.40 p.p.m.), 2'-1' (4.33 p.p.m.), 5"-4" (3.59 and 4.72 p.p.m.), 4"-3" (3.45 p.p.m.), 2"-1" (3.12 and 4.42 p.p.m.), and

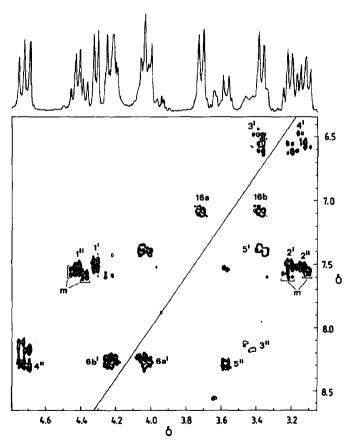


Fig. 1. 2D 300-MHz DQ spectrum of a 3:7 mixture of 1 and 2 in $(CD_3)_2$ SO with a selection time according to 11 Hz. The DQ diagonal $F_1 = 2F_2$ is shown, and contributions from 1 are marked m. The projection above is along the F_2 dimension.

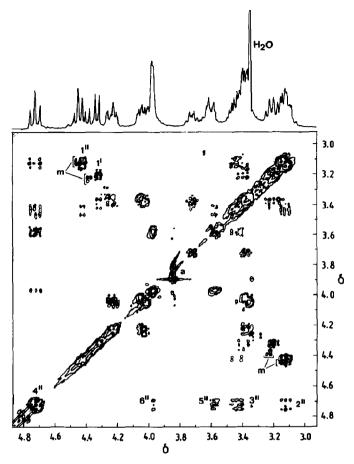


Fig. 2. Unsymmetrized 300-MHz RELAY spectrum of a 3:7 mixture of 1 and 2 in $(CD_3)_2SO$. Contributions from 1 are marked m and artefacts at the carrier frequency with a. The projection above is along the F_2 dimension.

16a-16b (3.72 and 3.39 p.p.m.). In the 4-Hz DQ ¹H-¹H 2D spectrum, the correlations from the anomeric protons were significantly smaller, but 6"-5" and 6b'-5' cross-peaks were also observed; the 3"-2" correlation was not observed.

The dependence of signal intensities on the mixing time and time-consuming acquisition are disadvantages of the DQ method. Most effective was the DQF RELAY method¹³ (Fig. 2). Remote connectivities (i.e., relay correlations: $A \rightarrow M \rightarrow X$) were detected as weak cross-peaks at σ_x/σ_x frequency in addition to strong vicinal correlations ($A \rightarrow M$). All the proton shifts (and carbon shifts via the HETCOR experiment) could be assigned, e.g., for H-4" which shows vicinal correlations with H-5" and H-3" as well as relay correlations with H-6" and H-2", respectively.

Determination of inter-residue linkage. — The DQF COSY spectrum of 2 in $(CD_3)_2SO$ revealed the location of the hydroxyl groups via the vicinal couplings of hydroxyl protons at 5.29–5.64 p.p.m. to protons at positions 3',4',2", and 3"; therefore, the linkage positions were established at positions 1',2',1'', and 4''.

18 L. Weber et al.

The 1D selective INEPT method, which can be useful for detection of long-range ${}^{1}H^{-13}C$ couplings and, thus, in the determination of inter-residue linkages 14 , showed only a polarization transfer from H-4" (4.72 p.p.m.) to the hexadecanoyl carbonyl atom C-1 (172.1 p.p.m.). No transfer was observed from the anomeric protons or H-2' due to fast relaxation (T_{1} < 100 ms).

The 1D n.O.e. difference spectra (NOEDSY) of 2 showed several diagnostic negative signals. Through-space interactions were observed upon irradiation of H-1' with H-3', H-5', and H-16b of the hexadecanoyl residue and, similarly, upon irradiation of H-1" with H-3", H-5", and H-2'. The n.O.e. data reflected the axial cis relationship of H-1,3,5 of the glucose moieties as well as the connections Glc- $(1\rightarrow 2)$ -Glc and Glc- $(1\rightarrow 16)$ -hexadecanoic acid, thereby completing determination of the structure.

EXPERIMENTAL

F.a.b.-mass spectra were recorded in a glycerol matrix with a VG-ZAB-HSQ spectrometer. N.m.r. spectra were obtained for 0.25M solutions in (CD₃)₂SO or CDCl₃ (internal Me₄Si) with a Bruker MSL-300 spectrometer (¹H, 300.13 MHz; ¹³C, 75.479 MHz). The quantitative ¹³C-n.m.r. spectra were recorded after addition of 5% of chromium(III) acetonyl acetonate to the sample (16k data points, zero-filled to 64k and weighted with a 2-Hz line-broadening prior to transformation and spectra subtraction).

2D Heteronuclear-correlated n.m.r. spectra. — Coherence delays were used according to 145 Hz for ${}^{1}J_{\text{C,H}}$. A total of 256 experiments were acquired, each with 32 transients and a relaxation delay of 1.5 s. The resulting matrix of 1024×256 data points was zero-filled in the F_1 dimension to 512 points and multiplied by a sine-bell function ($\pi/3$). The F_2 domain was multiplied by a line-broadening function (3 Hz) prior to processing.

2D J-Resolved spectra. — Spectra were recorded with spectral widths of 1700 Hz and 8k data points in the F_2 dimension, and 26 Hz and 64 data points in the F_1 dimension. The data matrix was zero-filled in F_1 to 128 data points and multiplied with sine-bell functions in F_1 (π /4) and F_2 (π /8).

2D Homonuclear-correlated n.m.r. spectra. — COSY-90, COSY-45, DQF COSY, DQF RELAY, and DQ 2D n.m.r. spectra were used with a 512 \times 1024 data matrix, which was zero-filled and sine-bell shifted by $\pi/8$ in each dimension. According to phase-cycling in the pulse programs, 16, 16, 32, 64, and 64 scans were accumulated for each experiment with a relaxation delay of 2 s. The total mixing time was set to 30 ms for the DQF RELAY. Quadrature detection was employed in both the F_1 and F_2 dimensions, completing the original DQF RELAY¹³ to a 64-step phase cycle. The phase cycling for quadrature detection in DQ 2D¹² n.m.r. spectra was supplied by G. E. Martin, which is gratefully acknowledged. The sweep widht in the DQ F_1 dimension was chosen twice as large as in F_2 .

REFERENCES

- A. P. Tulloch, in L. A. Wittig (Ed.), Glycolipid Methodology, Am. Oil Chem. Soc., Champaign, Illinois, 1976, pp. 326-344.
- 2 A. P. Tulloch, Can. J. Chem., 46 (1968) 3727-3730.
- 3 A. P. Tulloch, A. Hill, and J. F. T. Spencer, Can. J. Chem., 46 (1968) 3337-3351.
- 4 H.-J. Asmer, S. Lang, F. Wagner, and V. Wray, J. Am. Oil Chem. Soc., 65 (1988) 1460-1466.
- 5 D. Haferburg, R. Hommel, R. Claus, and H.-P. Kleber, Adv. Biochem. Eng./Biotechnol., 33 (1987) 53-93.
- 6 R. Hommel, O. Stüwer, W. Stuber, D. Haferburg, and H.-P. Kleber, Appl. Microbiol. Biotechnol., 26 (1987) 199-205.
- 7 O. Stüwer, R. Hommel, D. Haferburg, and H.-P. Kleber, J. Biotechnol., 6 (1987) 259-269.
- 8 R. Hommel, unpublished data.
- 9 L. Weber and G. Haufe, J. Prakt. Chem., 330 (1988) 319-322.
- 10 J. Dabrowski, P. Hanfland, and H. Egge, Biochemistry, 19 (1980) 5652-5658.
- 11 J. Dabrowski, in W. R. Croasmun and R. M. K. Carlson (Eds.), Methods in Stereochemical Analysis, Vol. 9, VCH Publishers, Deerfield Beach, 1987, pp. 349-386.
- 12 D. A. Craig and G. E. Martin, J. Nat. Prod., 49 (1986) 456-465.
- 13 P. L. Weber and L. Mueller, J. Magn. Reson., 73 (1987) 184-190.
- 14 A. Bax, J. Magn. Reson., 57 (1984) 314-318.